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The mechanical behaviour of linear low density polyethylene fibres has been investigated by means of 
uniaxial elongation tests and thermomechanical measurements. A mechanical model initially introduced by 
Grubb for HDPE fibres is proposed to account for the experimental results. This model is built on the basis of 
a high modulus Takayanagi-type model in which the crystalline continuity is interrupted by adjunction of a 
small fraction of amorphous phase in series with the mechanically active crystals. This fraction is determined 
by means of an original theoretical treatment of the stress-strain curves of the fibres. Correlations have been 
set up between this additional parameter and the mechanical properties of the fibres. 
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I N T R O D U C T I O N  

During the last 10 years, improvements in 
copolymerization of ethylene with ~-olefins have 
produced a new class of low density polyethylenes. The 
so-called linear low density polyethylenes (LLDPE) 
exhibit original mechanical properties as hot drawn fibres 
have a rather high elastic modulus close to 10 GPa, a 
good tensile stress at break in the range 0.5-1 GPa  
associated with an important residual elasticity exceeding 
10%. 

From the theoretical point of view, L L D P E  are very 
useful to study the role played by the amorphous chains in 
the properties of drawn samples as the volume fraction of 
the elastomeric amorphous phase can vary over a wide 
range depending on the comonomer content. 

In a previous paper 1, the drawability of such a material 
has been studied and the conditions leading to the highest 
ultimate draw ratio have been determined for solid state 
hot drawing. Thermal behaviour, molecular orientation 
and mechanical properties have been also investigated 
and reported in another paper 2. It appeared from that 
work that crystallinity increases slightly during drawing 
while the crystalline phase orientation becomes nearly 
perfect after the neck propagation and the amorphous 
phase orientation remains poor. On the other hand, the 
tensile modulus increases largely with draw ratio as 
commonly observed for high density polyethylene 
(HDPE). It was suggested that the fibre stiffness is more 
sensitive to the number of intercrystalline tie molecules 
than to the chain tautness. 

In this paper, we present a mechanical model based on 
the original elastic properties of L L D P E  fibres which 
successfully accounts for the increase of tensile modulus 
with draw ratio. 

* To whom correspondence should be addressed 

MECHANICAL MODELS:  GENERAL 
CONSIDERATIONS 

The development of high modulus fibres from 
semicrystalline polymers has led several authors 3- 8 to 
propose various mechanical models to account for the 
improvement of modulus as a result of drawing. Although 
the rough features of these models are based on the actual 
morphology of the fibres, the distribution of the 
crystalline and amorphous phases in the models is 
basically related to the degree of mechanical coupling of 
both phases in 'series' and 'parallel' arrangements. In fact, 
the analogy between the models and the actual fibres is 
much more mechanical than structural. 

In the case of HDPE,  the plastic deformation of the 
fibrous structure beyond necking proceeds mainly by 
shear displacement of microfibrils. This deformation 
enormously extends the interfibrillar tie molecules and 
enhances their contribution in the axial mechanical 
properties of the fibres, leading to a linear increase of the 
modulus with draw ratio up to values close to 100 GPa  3. 
Alternatively, the formation of crystalline bridges has 
been proposed 4 to explain the modulus increase. This is 
based on the fact that the average longitudinal crystal 
thickness Lo02 obtained from the line broadening of the 
(0 0 2) reflexion is greater than the long period estimated 
from small-angle X-ray scattering, SAXS 8. The melting 
temperature of the fibres also proved the existence of 
crystal thicknesses exceeding the average long period 9'1 o. 

These two approaches have originated a mechanical 
model in which a part of the material (taut tie molecules 
or crystalline bridges) acts in 'parallel' with a 'series' 
arrangement of the amorphous phase and the remaining 
lamellar crystals. This kind of Takayanagi model is 
shown in Figure la where Ec and E a a r e  the crystalline and 
amorphous moduli, b is the fraction of mechanically 
continuous crystal and Xc is the overall crystal volume 
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Figure 1 Mechanical models for the modulus of semicrystalline 
polymer fibres. (a) High modulus Takayanagi model; (b) and (c) two 
different ways of developing (a) in 'series-parallel' arrangements 

fraction. This model can be developed in two ways 
(Figure lb and c) depending on the stress distribution in 
the material 3'4. Assuming that (1-b)E~ <bEc, the first 
arrangement (Figure lb) gives a modulus E "  bE~ and the 
second one (Figure lc) gives E ~- bEg(1 - X~ + b). In both 
cases the increase of modulus is explained by an increase 
of the b fraction in the fibres. It has been previously 
discussed 4'5 that the choice between the two kinds of 
developments of the model of Figure la on the strict basis 
of the minimum energy criterion is not possible unless an 
accurate determination of the parameter b. On the other 
hand it has been emphasized that, on a structural basis, 
the model of Figure lb is more appropriate than that of 
Figure lc for drawn fibres, notably with regard to the 
fibrillar texture involving a molecular continuity in the 
drawing direction through the unfolded chains 8. 

For the LLDPE studied in this work, we have 
previously shown that the crystalline blocks slightly 
thicken on drawing, but not enough for the build up of 
crystalline bridges 2. Furthermore, the residual elasticity 
of the fibres exceeding 10%, even for the maximum 
achievable draw ratio 2= 13, is in major contradiction 
with any type of crystal continuity. So, the previous 
modified Takayanagi model which is successful for ultra 
high modulus HDPE fibres is not suitable for the much 
less stiff LLDPE fibres. 

On the other hand, a simple 'series' model assumed on 
the basis of the more or less regular alternation of low 
elastic modulus amorphous layers and high elastic 
modulus crystal blocks would yield an extremely low 
modulus E given by the following equation 1~ 

1/E=XdE~-(1-X~)/Ea".(1-X~)/E.  (1) 

Indeed, assuming an amorphous modulus Ea--- 0.5 GPa 11 
and considering that the volume crystallinity does not 
exceed X¢= 0.6 for the LLDPE drawn to its ultimate 
draw ratio 2, the 'series' model would predict a maximum 
value of the modulus close to 0.8 GPa which is 10 times 
lower than the experimental value. So, the 'series' model 

must be discarded for giving too large a part to the 
amorphous phase, from the mechanical standpoint. 

We have been led to propose an alternative model 
which excludes crystal continuity but which does not give 
a predominant role to the amorphous phase. The model 
recently introduced by Grubb 5 seemed to fulfil very well 
the above conditions. Indeed, as shown in Figure 2a, this 
model assumes an interruption of the crystal continuity 
by narrow amorphous regions of volume fraction f with 
respect to the mechanically active part b. Grubb's 
proposal considers that these amorphous regions consist 
of entanglement clusters having a modulus E1 not 
necessarily identical to the bulk amorphous modulus Ea. 
However, in the case of LLDPE, one must also consider 
the amorphous chains which bear the load along the 
fibrils as do the entanglements, namely the tie molecules 
which can be taut under tension. Accordingly the 
modulus of the additional amorphous regions should be 
close to Ea. 

The model gives rise to four arrangements which are 
not very different from each other on the basis of the 
energy criterion 5 provided that f is small as will be shown 
later. Nevertheless, as suggested by Grubb, the 
arrangement of Figure 2b which is derived from Figure lb 
is more appropriate from the structural point of view. For 
such an arrangement, the modulus E is given by the 
relation 

Assuming that f<~l,  E.<Ec and El~-Ea, equation (2) 
becomes 

E = b[(l - f)/E~ + f l E a ]  -1  (3) 

(4) 

This approximation is equivalent to neglecting the 
contribution of the right hand side of the model so that 
only the left hand side containing a small fraction f of 
amorphous phase contributes significantly to the overall 
modulus. The previous assumption that f ~ 1 leads to 
further simplify equation (3) into the following equation 

E = bEe(1 + f E c / E a )  - 1  

I 
l 

According to this equation, the increase in tensile 
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Figure 2 Modified Takayanagi high modulus model introducing a 
fraction of amorphous material in series with the fibrous crystals 
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modulus with draw ratio can be related to a decrease of 
the fraction f,  with a limiting value Emax =bEc, assuming a 
constant value of the fraction b of the mechanically active 
part of the model. 

In the present work we have tested the model proposed 
by Grubb in the case of L L D P E  fibres in order to describe 
their specific properties. We have also developed an 
original means to determine quantitatively the fraction f 
of the mechanically amorphous regions. 

EXPERIMENTAL 

The L L D P E  studied is an ethylene/1-butene copolymer 
of nominal specific gravity p = 0.930 supplied by C. d. F. 
Chimie. Its number and weight average molecular 
weights are ] ~ , = 4 . 6 x 1 0 4  and M , = l . 6 x l 0 5 .  The 
polymer was compression moulded into sheets for 10 min 
at 160°C before cooling at 10°C min-1.  

Dumbbell specimens with gauge dimension 20 x 5 mm 
were cut from 0.5 mm thick sheets and drawn at 80°C in 
an Instron tensile testing machine at a drawing rate of 
50m m min-1 .  Fibres having draw ratio in the range 
4 < ~. < 13 were prepared. These fibres were subsequently 
tested at room temperature using a cross head speed of 
1 mm min-  1, the sample length being 50 mm. The tensile 
modulus of the fibres was computed from the initial slope 
of the stress-strain curves. 

Dynamic mechanical measurements were performed 
on a Toy•  Baldwin DDVII-B Rheovibron in the 
temperature range ( - 1 3 5  to +45°C). The l l 0 H z  
frequency has been selected for temperatures below 

- 60°C in order to shift the 7 transition in the temperature 
range accessible to our low temperature device. On the 
other hand the 3.5 Hz frequency has been selected for 
temperatures above - 60°C to allow the occurrence of the 
a-transition before the thermal shrinkage of the samples. 
Indeed thermal shrinkage prohibits accurate measure- 
ments above 45°C. The fibres studied were prepared from 
0.2 mm thick sheets according to the procedure used for 
tensile modulus measurements. The decrease in sample 
section with increasing draw ratio roughly compensates 
the increase of modulus, so that all the samples have been 
tested in the same ranges of strain and force. 
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RESULTS AND DISCUSSION 

Tensile modulus 
Figure 3 shows a non-linear increase of the tensile 

modulus E with draw ratio 2. However plotting 1/E 
against 1/22 in Figure 4 gives a remarkably straight line 
with very little scatter within the limits of experimental 
errors. It is worth mentioning that this analysis of the 
experimental data is consistent with Grubb's 
interpretation of hot drawing, based on a progressive 
disentanglement of the molecular network with 
increasing draw ratio 5. The most important implication is 
that the parameter f of the mechanical model should 
decrease as a function of 1/~. 2 since f follows the tensile 
modulus variation according to equation (4). 

Using the specific properties of the LLD P E fibres, we 
have attempted to establish a procedure for a direct 
determination of the fraction f. 

Elastic behaviour of LLDPE fibres 
Figure 5 represents the stress~strain curve of a fibre 

whose draw ratio is 2 ~-9.1. We find in this experimental 
curve the typical features of a rubber stress-strain curve. 
These are an initial bending over towards the extensions 
axis characteristic of the Gaussian behaviour and a final 
upward curvature related to the limited extensibility of 
the macromolecular network. Between these two regions 
of opposite curvature the asymptotic limit of the 
Gaussian behaviour gives rise to a linear domain with a 
slope roughly one-third of the initial slope of the stress- 
strain curve. 

A simple explanation of this global mechanical 
behaviour can be proposed in the frame work of Grubb's 
model. For  an elastic testing limited to a macroscopic 
strain of 10%, the material behaviour can be primarily 
related to the deformation of the active part of the 
mechanical model, and especially to that of its most 
compliant amorphous component. Therefore, the 
experimental mechanical behaviour of the fibres should 
be described in terms of rubber elasticity. Consequently, a 
direct means to quantify the amount of mechanically 
active amorphous phase is afforded through the 
determination of its actual deformation, thanks to a 
fitting procedure of a rubber stress-strain curve with the 
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Figure 5 Stress-strain curve for a LLDPE fibre of draw ratio 2-~ 9.1. 
A, experimental curve; B, theoretical curve in the inverse Langevin 
approximation using n=100; C, theoretical curve in the inverse 
Langevin approximation using n = 200; D, Gaussian asymptote 

experimental curve of each fibre. Indeed, the 'series' phase 
association that constitutes the left-hand side of the model 
of Figure 2b obeys the strain-balanced equation 

~-mac-- 1 = (Zc-- 1)(i -- f )  + (2a-- 1)f  (5) 

where 2~c is the macroscopic elongation and 2~, 2a the 
respective elongations of the crystalline and amorphous 
phases in the mechanically active part of the material. 
This equation can be reduced to 

This asymptotic behaviour appears on the experimental 
curve as the tangent at the inflexion point (Figure 5). The 
graphical extrapolation of this tangent gives bNakT when 
intercepting the y-axis. Thereby the plotting of the 
amorphous deformation scale (~) on the x-axis can be 
derived from Z~=a/bN~kT (equation (9)), where a is 
measured on the tangent. 

Then the theoretical Gaussian curve is drawn using 
equation (8), giving a good fit with the first part of the 
experimental stress-strain curve. 

The final increase of stress related to the limited 
extensibility of the mechanically active amorphous phase 
is clearly observed for draw ratio values 2 > 8. In this case, 
the final upward curvature is well defined and the whole 
curve can be theoretically replotted using the inverse 
Langevin approximation 12 

tr = bN~ k Tn 1/2/3 [ L -  1 (2a n - t/2 ) _ 2 ;  3/2 L-  1 (2~- 1/2n - 1/2)] 

(1o) 

which takes into account the limited extensibility of the 
network. In this equation n is the number of statistical 
segments between entanglements and its value is adjusted 
to give the best fit with the experimental curve. 

For  lower values of the draw ratio, plastic deformation 
can proceed further even at ambient temperature, 
prohibiting any theoretical treatment of the upper strain 
range of the stress-strain curves. However the 
assumption that the crystal is not plastically deformed 
during the mechanical testing of the fibres should 
reasonably hold true at low strains. So, as long as the 
asymptotic Gaussian behaviour can be determined, the 
asymptote can be drawn and the value of parameter f 
computed using equation (6). 

The procedure above has been applied to a series of 
fibres having draw ratios in the range 5 < 2 < 12.5. Figure 
6 shows a plot of the fraction f as a function of 1/A 2. A 
fairly linear correlation is obtained within the limits of 
experimental accuracy. According to this result, the linear 

2mac - i = ()'a - 1 ) f  (6) 

taking into account that Ec >> Ea. 

Quantitative determination of  the fraction f 
According to the Gaussian approximation, the stress- 

strain equation for a uniaxial deformation of an 
elastomeric network at low strains is 12." 

tr = Nk T(2 - 2 - 2) (7) 

where a is the nominal stress, N the number of active 
chains per unit volume, T the absolute temperature and 2 
the extension ratio of the rubber network. So, in the case 
of L L D P E  fibres, we can write: 

a = bNa k T(~. a - )'a 2) (8) 

where Na is the number of active chains per unit volume in 
the mechanically active amorphous phase and 2 a its 
actual elongation. 

For  sufficiently large 2a values, equation (8) can be 
reduced to the asymptotic form 

a=bN~kT2a (9) 
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Figure 6 Volume fraction f of amorphous material in series with the 
mechanically active crystals versus 1/2 2 
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Figure 7 Variation with temperature of the loss modulus of LLDPE 
fibres having different draw ratios 

increase of tensile modulus with 1/2 2, c an  be related to a 
reduction in the same proportion, of the amount of 
amorphous phase in the mechanically active part of the 
model. 

Thermomechanical results 
The variations of the loss modulus with temperature 

have been studied for LLDPE fibres having draw ratios 
between 4 and 11. Figure 7 shows that the ~ and y 
transitions are clearly resolved, their maxima being 
respectively about + 20 and - 130°C. The amplitude of 
both transitions increases with draw ratio, indicating that 
the molecular relaxations which give rise to them are 
sensitive to the alignment of the chains in the drawing 
direction. Although there has been some disagreement as 
to whether the polyethylene y-relaxation could be the 
glass transition or not, this relaxation undoubtedly 
occurs in the amorphous phase 13- 15. On the other hand, 
the a-relaxation has been clearly identified as arising from 
the activation of molecular motions in the crystalline 
phase14Ar,  17. 

The magnitude of a given mechanical transition 
depends on the volume fraction of the phase 
involved x6'17. But other factors such as orientation, 
dispersion and specific viscosity must be taken into 
account. In order to eliminate all these factors, we have 
studied the variation of the ratio E"y/E%t, E"y and E"~ 
being respectively the maxima of loss modulus for y and 
transitions, as a function of the draw ratio. Since the 
mechanical properties of the fibres are chiefly related to 
the response of the mechanically active part of the 
material, the ratio E~/E~ should be a good parameter for 
following the relative changes in the volume fractions of 
amorphous and crystalline active phases. On the other 
hand, we have previously shown that the values of f are 
always lower than 3.5 %. Therefore, the ratio f / 1 - f  is 
very close to f and should be proportional to 1/22. 

Figure 8 shows a plot of the ratio E~/E'~' as a function of 
1/22 which exhibits a fair linearity considering the 
experimental errors. 

The good agreement between these two independent 
results supports the validity of the model developed in this 
paper. 

CRITICAL REMARKS 

An important assumption for this model is that the 
fraction b of the mechanically active part remains 
constant with increasing draw ratio. However, in the case 
of the model introducing a crystalline continuity, the 
stiffness increase was ascribed to an increasing fraction of 
the continuous crystals with draw ratio 4. In the present 
work the sole decrease of the fraction f can account for 
the stiffness increase. 

There is difficulty in determining the fraction b of the 
mechanically active part in the model. The model 
described here leads to a limiting value of the elastic 
modulus equal to bE~ (equation (4)). This value should be 
in principle determined from the intercept with the 
ordinate axis of the linear plot of lIE versus 1/22. 
Nevertheless this extrapolation cannot give a precise 
value of 1/bE~. Moreover the theoretical value of the 
crystal modulus along the chains which must be taken 
into account as the crystal is nearly fully oriented for 2 > 4 
(ref. 2) varies in the range 240-350 GPa zS. 

Another possibility is to consider the value bE a derived 
from the relative slopes of the linear plots giving f and 
1/E versus 1/22 (equation (4) and Figures 4 and 6). This 
value can be estimated to 40 MPa, but Ea is not directly 
accessible by the experiment. E a is generally estimated 
between 0.5 GPa and 1 GPa for high modulus PE fibres. 
However, considering that narrow crystalline lamellae 
inherent to the LLDPE low crystallinity 19 allow the 
amorphous part to contract transverse to the elongation 
axis 2°, we can suppose that the value of Ea should be 
smaller than the previous value. For example, assuming a 
va lue  E a =  0.1 GPa leads to a quite reasonable value of 
b = 0.4. Finally, b cannot be satisfactorily determined by a 
mechanical approach. On the other hand, thermal 
analysis can afford a good means for the estimation of b as 
we have reported elsewhere 21. 

Another parameter appears in the theoretical study of 
the stress-strain curves obtained at ambient temperature 
from fibres having draw ratio higher than 8. This 
parameter is the number of statistical segments n 
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introduced to give a good fitting between the 
experimental and theoretical curves, in the inverse 
Langevin approximation. The so determined values of n 
are in the range 100-300 which corresponds to a 
molecular weight between entanglements of several 
thousand grams per mole. However the theoretical 
treatment of the stress-strain curves postulates that the 
deformation is borne almost entirely by the active 
amorphous phase. This approximation which is 
reasonable for low strains is untenable for higher stress 
level since the crystalline phase is rather viscoelastic at the 
ambient temperature which corresponds to the maximum 
of the or-relaxation, Consequently the strain hardening of 
the final stage of deformation related to the limited 
extensibility of the network is likely to be delayed by the 
crystal deformation. In other words, the values of n 
determined by this method are systematically 
overestimated and do not contribute reliable information 
on the actual network. 

crystalline continuity can be considered as a limiting case 
of the present model from both mechanical and structural 
standpoints. 

C O N C L U S I O N  

The Takayanagi-type model assuming a crystalline 
continuity to account for the high modulus of H D P E  
fibres is not suitable for L L D P E  copolymers. The 
mechanical model presented in this paper is different from 
the previous model in the lack of crystalline continuity, 
which is indeed doubtful in the case of LLD P E fibres for 
structural and mechanical reasons. The value of the 
fraction of amorphous phase introduced in 'series' within 
the mechanically active part of the model has been 
determined by means of an original theoretical treatment 
of the fibre stress-strain curves. Its evolution with draw 
ratio is consistent with the variation of the elastic 
modulus together with the thermomechanical results. 

U N D E R L Y I N G  STRUCTURAL ASPECTS 

We have previously mentioned that Takayanagi-type 
models are generally proposed to account for the 
mechanical behaviour of multiphase systems with little 
attention to the structural aspects of the problem. 
However, in the case of high modulus fibres, structural 
features have often been taken into consideration to help 
choose between the various ways of development of the 
models which depend on the stress distribution over the 
different phases. The well-known fibrillar texture of 
drawn semicrystalline polymers has notably been a basic 
factor for the conception of the Grubb's model 5 with a 
special regard to the shish-kebab structure which consists 
of fibrous cores with overgrowth lamellar crystals. 
Nevertheless, Grubb has pointed out that the main 
implication of a fibrous structure is a mechanical 
continuity without necessarily crystal continuity. 

Our extension of Grubb's model offers a good 
alternative to the now classic explanation of the stiffness 
increase by development of a crystalline continuity which 
is untenable for low crystallinity polyethylenes. Other 
w o r k s  4'22'23 have already shown that the crystalline 
bridge model which fitted extremely well with the results 
from homopolymers at high draw ratios was not 
applicable to ethylene copolymers of comparable 
molecular weights and to homopolymers at low draw 
ratios. In fact, the absence of crystal continuity was a 
necessary assumption to account for the mechanical 
behaviour of L L D P E  fibres. But this assumption appears 
to be an actual structural characteristic of ethylene 
copolymers as indicated by the comparison of the crystal 
thickness with the SAXS long period 1'22. 

It is to be emphasized however that the decrease of the 
fraction f is liable to lead to a disapprarance of the 
mechanically amorphous phase and thus to the build up 
of crystalline bridges. Therefore, the model assuming a 
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